
Chaotic Variations for Procedural Content
Generation in Games

Alex Burnley
University of Colorado Boulder

I. INTRODUCTION

Demand for large amounts of content in games has only
increased as the gaming industry has grown. This has lead
to the development of a variety of procedural content gener-
ation (PCG) techniques, where new levels are created at run
time for a player to enjoy. These techniques provide almost
infinite amounts of content, however they can be complex to
implement and achieve the desired results.

Chaotic variations, a method of generating variations on
a symbol sequence using a chaotic mapping, has yet to be
studied as a method of PCG for games. This paper applies
this technique to create new levels for the game Super Mario
Bros [1].

II. RELATED WORK

Diana Dabby proposed a technique for generating musical
variations of an original piece by mapping musical pitches to a
chaotic trajectory then generating a second chaotic trajectory
with a different initial condition and inverting the mapping
[2]. Her results found that musical variations created through
this method could retain characteristics of the original piece
or become completely different. Bradley et al. extended this
technique to movement sequences including dance and martial
arts forms [3]. While the chaotic variations caused harsh
transitions that had to be smoothed out, their results found
that the generated sequences were natural in the context of
the original sequence.

A substantial amount of research has been done on tech-
niques for PCG. These extend from generating terrain to
placing objects to fulfill feasibility and difficulty constraints.

Terrain generation is typically done through a noise based
approach, where the values generated by noise can be mapped
to tile types for 2D games or used to determine terrain height
in 3D games. Gurler et al. defined a technique for constraining
3D Perlin noise based terrain in tile based games [4]. Another
technique for tile based terrain was described by Macedo et al,
where cellular automata and Hilbert curves are used to create
levels that are aesthetically similar but have very different
paths through the level.

Evolutionary algorithms, and other search algorithms, are
commonly used in PCG to create levels that fit certain
constraints. Brown et al. used an evolutionary algorithm to
generate level layouts for the game Hotline Miami and used
fitness functions that could be changed to adjust characteristics
of the generated level [5]. Adrian et al. created a fitness
function for measuring level difficulty, allowing evolutionary

algorithms to be used to create levels with a target difficulty
[6]. These approaches to PCG provide a lot of flexibility and
can generate levels for almost any goals, although designing
fitness functions can become very complex.

Recently, machine learning has also become a popular
method for PCG. Nam et al. used reinforcement learning and
stochastic noise parameters to build diverse multi-stage levels
for a turn based role playing game [7]. Siper et al. trained a
convolutional network to generate new levels for 2D games
by treating level creation as a repair task [8]. Zhang et al.
developed a deep learning model for repairing reachability
issues in platforming games, ensuring that any level created is
completable [9]. While effective, each of these works require
creative, sometimes complex, methods to create a training
dataset that emphasizes desired level characteristics.

III. CHAOTIC VARIATIONS

The technique used by Diana Dabby [2] and Bradley et
al. [3] takes advantage of the sensitive dependence on ini-
tial conditions of chaotic attractors to create variations of a
symbol sequence. New symbol sequences generated in this
way can retain patterns and characteristics from the original,
or be very different. In PCG, creating new content that has
specific characteristics but is different enough to create a new
experience for the player is the main goal, but it can be difficult
to accomplish effectively. This technique provides a method
for accomplishing this based on a single example level.

To apply this technique, a symbol sequence is mapped to a
trajectory around a chaotic attractor. This is done by selecting
a chaotic system and an initial condition, then using fourth
order Runge Kutta to generate the points in the trajectory.
Points are removed from the start of the trajectory to remove
the transient, then each symbol is mapped to a point in the
trajectory. In Diana Dabby’s case, symbols were mapped to
the x coordinate of the points, while Bradley et al. mapped
the points to the three dimensional coordinates of the points.
This paper uses the method used by Bradley et al. and maps the
symbols to the three dimensional coordinates. To generate a
variant of the symbol sequence, a new trajectory is generated
from a different initial condition. The transient is removed,
then the trajectory is converted into a symbol sequence: for
each point, the nearest point in the original trajectory is found
and the symbol mapped to it is used in the new sequence. This
method is a deterministic way to create variants of a symbol
sequence, and the sensitive dependence on initial conditions
means a near infinite number of variants can be created.



Fig. 1. When representing a level as a symbol sequence, symbols should
represent the smallest section of level possible, but must fully contain any
components of the level that cannot be broken apart. Here, a single column
of tiles in the staircase can be represented by one symbol since the staircase
can be broken apart, but the symbol representing the pipe must represent at
least two columns to fully contain the pipe.

IV. APPLYING CHAOTIC VARIATIONS TO GAME LEVELS

Diana Dabby and Bradley et al. were very successful in
applying this technique to music and movement sequences [2],
[3]. These sequences are inherently one dimensional and easily
represented as a symbol sequence. Levels in games are rarely
one dimensional, usually being two or three dimensional. The
main challenge of applying this technique is then to represent
the game level as a symbol sequence. The game Super Mario
Bros [1] was chosen to apply this technique to because
levels are two dimensional, but the player’s experience can
be interpreted as one dimensional. As the player progresses
through the level, they encounter obstacles one at a time, but
the ordering of the obstacles defines the experience: a pipe
is a single obstacle but can be used to easily jump over an
enemy. A symbol can then be assigned to each section of
level containing an obstacle, which is then used to represent
the entire level as a symbol sequence.

What a single symbol represents must completely encap-
sulate any object that cannot be broken apart in the context
of the game. For example, in Super Mario Bros, the level is
constructed with 2D tiles, so the smallest section of the level
that can be represented by a symbol is a column of tiles. Some
obstacles, such as pipes, are wider than one column and cannot
be broken apart, so a symbol must represent two columns to
completely contain the pipe. Other obstacles, such as stairs,
can be interpreted as a series of increasingly tall walls, so a
symbol can represent a single column within the obstacle. This
is shown in Figure 1.

Once the level was represented by a symbol sequence,
each symbol was mapped to a point in a trajectory on the
Lorenz attractor. A time step of .01 was used in fourth order
Runge Kutta to generate the trajectory. Due to the relatively
short length of the symbol sequence and small time step,
the trajectory only wrapped around each side of the attractor
approximately two times, seen in Figure 2. In practice, this
results in new levels created using this technique all being
very similar and containing the same few large sections of the
original level. One way to increase the variety in level variants
is to repeat the sequence. This helps to fill out the attractor, so
that new trajectories that visit different parts of the attractor

Fig. 2. These plots show the points that the symbol sequence representing a
level was mapped to. From top to bottom, the plots show a trajectory with
a small time step and no repeats, a trajectory with a short time step and 1
repeat, and a trajectory with a large time step and 1 repeat. When a symbol
sequence is relatively short, the points the symbols are mapped to don’t fill
out much of the attractor. This can limit the possibilities when variants are
generated. Repeating the sequence can help fill out the attractor and increase
the variety in generated sequences. Increasing the time step used by Runge
Kutta can also increase how much of the attractor is covered, although it also
increases how much new symbol sequences will differ from the original.

may map to different parts of the level. However this still
results in variants containing large parts of the original level,
making them appear very similar to the original.

One of the most important parameters in this algorithm is
the time step used in Runge Kutta when generating trajectories.
This parameter allows a user to loosely control how similar
variants are to the original level. When the time step is small,
the symbol sequence is mapped to a short trajectory with
points spread a across a short period of time. When the time
step is large, the symbol sequence is mapped to a longer
trajectory that captures chaotic behavior over a longer period



Fig. 3. Visual Comparison of Variants and Original Level. The top image is World 1-1 from Super Mario Bros. The following two images are variants created
from the original, using a small and large time step respectively. The last image shows the results of running the repair algorithm on large time step variant
to ensure it is possible to complete the level.

of time. In chaotic systems, perturbations grow over time. This
means that when the second trajectory is generated, the first
and second trajectories diverge in fewer steps when the time
step is larger. In the context of reordering a symbol sequence,
a small time step tends to result in larger parts of the original
symbol sequence to be used in the new sequence, while a
large time step tends to result in smaller parts of the original
sequence being used in the new sequence.

V. REPAIRING ISSUES CAUSED BY CHAOTIC VARIATIONS

Chaotic variations can place sections from completely dif-
ferent parts of a level right next to each other. This can cause
issues where an obstacle is created that is not possible to
overcome. The start of the level created with a large time
step seen in Figure 3 is an example of this. At the start of the
level, a wall was placed with no way of overcoming it.

This lead to the development of a simple algorithm for
”repairing” levels that can no longer be completed, described
in Algorithm 1. The algorithm resolves issues by inserting a
column from the original level, prioritizing columns located
near the instigating column’s location in the original level.
This helps maintain the style and types of obstacles from the
original level in the variant. An example of the results of this
algorithm can be seen at the bottom of Figure 3.

The algorithm is specifically designed around the mechanics
of Super Mario Bros, and takes advantage of them to simplify
the algorithm. It only accounts for Mario’s jumping capabil-
ities, and does not check if there are tiles blocking Mario’s
movement. It also makes the assumption that only movement
in the positive X direction allows progress, as this is a property
of the original level.

VI. USER STUDY

To determine whether players enjoyed levels created with
this technique, a user study was designed to compare the
experience of playing a level variant against the original level.
Participants were chosen as players who either frequently
played games, or had previously played Super Mario Bros
and were familiar with its gameplay mechanics. Participants
were asked to play three levels in random order: the original
World 1-1 from Super Mario Bros, a variant created with a
small time step, and a variant created with a large time step
that had the repair algorithm run on it. These levels can be
seen in Figure 3. After completing each level, the participant
was asked to complete a survey about their experience.

The Game Experience Questionnaire (GEQ) [10] was used
to measure the player experience of the levels as it is well
suited for measuring enjoyment as well as other metrics about
the player experience. Since the levels were not very long,



Algorithm 1 Reachability Repair Algorithm
For every column C1 in the level variant:

1) Identify tiles the player can stand on
2) Of these tiles, determine which can be reached from

previous tiles. This can be done using a basic model
of Mario’s movement and iterating backwards through
previous columns. For each previous column, check if
Mario can jump from any of the reachable tiles to any
tiles in C1.

3) If there are tiles that can be stood on but none are
reachable, then perform a repair:

a) Determine the original location of C1 in the orig-
inal level.

b) Iterate backwards through columns preceding C1

in the original level.
c) For each of these columns, determine if inserting

this column into the level variant directly before C1

would fix the reachability issues. This is done by
checking if tiles in this column could be reached
from previous columns in the level variant, then
checking if tiles in C1 can be reached from reach-
able tiles in this column.

d) Once a column from the original level is selected,
insert it into the level variant directly before C1.

the In Game Module of the GEQ was used as it is a concise
version of the Core Module. The survey, as well as responses,
can be found in Appendix A.

Fig. 4. This is an obstacle found in the level variant created with a large
time step. By combining components from different obstacles, a new obstacle
is created which requires a precise jump to overcome. This obstacle is very
different to and requires more precision than any obstacles in the original
level.

VII. RESULTS

Survey results, seen in Figure 5, show that player enjoyment
of the variants generated by chaotic variations matched enjoy-
ment of the original level. Differences in score distributions
between the variants and the original level were not statisti-
cally significant, with the exception of the flow score for the
variant with a large time step (p < .05). Flow measures how
much a player is absorbed in playing the game. This increase

Fig. 5. Comparison of GEQ scores for World 1-1 from Super Mario Bros
and two variants created using chaotic variations.

can likely be attributed to new obstacles being created by
combining small components of obstacles from the original
level. An example can be seen in Figure 4, where a new
obstacle was created that required a precise jump to overcome.
This shows that chaotic variations can not only produce levels
that players enjoy as much as the original, it can also produce
levels where the player’s experience is notably different to
playing the original level. Statistical results can be seen in
Appendix B.

VIII. CONCLUSION

This paper has shown how chaotic variations can be used as
a technique for PCG. In this case, the technique was able to
produce levels that were very similar to the original, as well
as levels that were very different. Player enjoyment of new
levels matched enjoyment of the original level, and variants
contained obstacles not seen in the original level, creating new
experiences for players. Only requiring a single example level
and potentially a repair algorithm, this technique can be used
to create level variants more easily than other PCG methods.
In a single game, many levels may have their own styles and
types of obstacles. This technique could be used on each level
to create variants without developing a PCG method for each
level.

Some of the success in the application of this technique can
be attributed to the ability to break the level into very small
pieces to be represented in the symbol sequence. Symbols
often represented a component of an obstacle rather than
the entire obstacle, which allowed new levels to contain
new obstacles created by combining components of entirely
separate obstacles from the original level. In many games,
breaking the level into such small components may not be
possible. This is especially true in 3D games, where breaking
3D meshes apart could cause a number of issues, including
gaps in the geometry of the level. In these cases, application
of this technique would need to be more limited and could
lead to differing rates of success.



REFERENCES

[1] Super Mario Bros. Nintendo, 1985.
[2] Diana S. Dabby. Musical variations from a chaotic mapping. Chaos,

6(2):95, 1996.
[3] Elizabeth Bradley and Joshua Stuart. Using chaos to generate variations

on movement sequences. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 8(4):800–807, 1998.

[4] Fatih Gürler and Esin Onbaşioğlu. Applying perlin noise on 3d hexag-
onal tiled maps. In 2022 International Symposium on Multidisciplinary
Studies and Innovative Technologies (ISMSIT), pages 670–673, Ankara,
Turkey, 2022.

[5] Joseph Alexander Brown, Bulat Lutfullin, and Pavel Oreshin. Procedural
content generation of level layouts for hotline miami. In 2017 9th
Computer Science and Electronic Engineering (CEEC), pages 106–111,
2017.

[6] Diaz-Furlong Hector Adrian and Solis-Gonzalez Cosio Ana Luisa. An
approach to level design using procedural content generation and diffi-
culty curves. In 2013 IEEE Conference on Computational Inteligence
in Games (CIG), pages 1–8, 2013.

[7] SangGyu Nam and Kokolo Ikeda. Generation of diverse stages in turn-
based role-playing game using reinforcement learning. In 2019 IEEE
Conference on Games (CoG), pages 1–8, 2019.

[8] Matthew Siper, Ahmed Khalifa, and Julian Togelius. Path of destruction:
Learning an iterative level generator using a small dataset. In 2022
IEEE Symposium Series on Computational Intelligence (SSCI), pages
337–343, 2022.

[9] Jin Zhang, Tianhan Gao, and Qingwei Mi. Side-scrolling platform
game levels reachability repair method and its applications to super
mario bros. In 2022 RIVF International Conference on Computing and
Communication Technologies (RIVF), pages 232–237, 2022.

[10] W.A. IJsselsteijn, Y.A.W. de Kort, and K. Poels. The Game Experience
Questionnaire. Eindhoven University of Technology, 2013.



IX. APPENDIX

A. Survey and Responses

Participants were asked to answer the survey after completing each level. Responses were on the following scale:

0 - not at all, 1 - slightly, 2 - moderately, 3 - fairly, 4 - extremely

Responses to the survey for each participant are displayed below.



B. Statistical Analysis of Survey Results

Scores for each participant were computed according to the GEQ guidelines. Two tailed t tests were performed for the
distributions of scores for each metric to compare results for the variants against results for the original level. Only the flow
score for the variant with a large time step was statistically significant.


